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*e nonlinear torsional vibration and instability oscillation caused by nonlinear damping in the shearer electromechanical
coupling cutting transmission system in shearer driven by the permanent magnet synchronous motor (PMSM) is investigated
in this paper.*e electromechanical coupling transmission system in the shearer is equivalent to a concentrated mass model for
the purpose of establishing the system dynamic model by the Lagrange–Maxwell equation. *en, the Routh–Hurwitz criterion
is used to determine the torsional vibration critical point and stability region for the Hopf bifurcation for the cutting
transmission system. According to the Routh–Hurwitz stability criterion, the Hopf bifurcation type and the effect of the
supercritical Hopf bifurcation in the torsional vibration of the cutting transmission system are analyzed. Furthermore, based
on the washout filter, the Hopf bifurcation controller is designed for suppressing the transmission system’s large vibration
amplitude and unstable oscillation. In addition, the influences of the linear gain and nonlinear gain on the bifurcation point
and the limit cycle amplitude are discussed. Finally, the numerical simulation results indicate the effectiveness of the designed
controller. *e research achievements can provide a theoretical basis for design or optimize the cutting transmission system of
high-reliability shearer driven by PMSM.

1. Introduction

In recent years, with the continuous development of coal
mining mechanization, it requires higher requirements for
the fully mechanized mining equipment in high efficiency
and high reliability [1, 2]. As an integral part of fully
mechanized mining equipment, the shearers may easily
break down due to the terrible working environment.
Currently, the traditional main transmission mode of the
cutting transmission system is “three-phase asynchronous
motor + three-stage straight tooth retarder + planetary gear
reducer + cutting drum,” which has a long transmission
chain and many transmission components. *e long-chain
transmission mode is prone to failure [3–5]. *erefore, a
semidirect driving system [6, 7] is proposed in this paper,
which consists of PMSM, three-stage straight tooth retarder,
and cutting drum, and is shown in Figure 1.

Comparing to the original system, the electromagnetic
torque and load torque will greatly increase due to the

system reduction ratio that is reduced by removing the
planetary gear [8, 9], which is prone to torsional vibration
of the cutting transmission system. *erefore, it has a great
significance to research the torsional vibration of the
cutting transmission system. Fortunately, this multimass
elastic torsional system like the shearer cutting section has
been researched by many domestic and foreign scholars
who mainly study from the perspectives of natural fre-
quency and disturbance. It is found that the nonlinear
factors are the main cause of torsional vibration, and
furthermore, bifurcation and chaos may occur in the
system due to some nonlinear factors [10–12]. On the
coupled bending and torsional vibration model of rubbing
rotor, with rotational speed as the bifurcation parameter,
the bifurcation and chaotic behavior of the rotor system are
studied by Al-Bedoor [13]. Liu et al. [14] studied the static
bifurcation characteristics and rotor system stability with
time-delay nonlinear parameters, and then the vibration
was controlled with the delay feedback. In [15], the self-
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excited oscillations caused by nonlinear factors in the
power system are analyzed. And the system Hopf bi-
furcation motion was researched with nonlinear mode and
Floquet theory with different resistance parameters. *e
mechanical rotor system Hopf bifurcation was researched
by Yuan [16], which was frequently encountered in the
mechanical structure, and may cause the shafting in-
stability and damage. Saigo et al. [17] studied the sup-
pression of forced vibration of the concentrated mass
torsion system by a wave absorption. *e results demon-
strate that smaller mass and larger spring stiffness of an
imaginary system absorb vibration energy better.

However, the cutting transmission system in shearer
not only includes the motor but also mechanical parts,
which belongs to the electromechanical coupling system.
Due to the effect of electromechanical coupling, the cutting
transmission system will exhibit complex dynamic be-
havior [18–20]. *erefore, the torsional vibrations of the
system cannot be interpreted rationally, neither from
electrical nor from mechanical aspect. It is important to
establish an accurate model of the electromechanical
coupling system to further analyze the torsional vibration
dynamic characteristics in the semidirect transmission
system of the shearer and control the torsional vibration
from the aspect of motor [21]. Gustavsson and Aidanpää
[22] established the model of electromagnetic excita-
tion produced by the uniform magnetic field, and the
influence of nonlinear magnetic pull on rotor vibration of
the hydrogenerator unit was discussed. Szolc et al. [23]
researched the dynamic electromechanical coupling effects
in machine drive systems driven by asynchronous motors,
and the electromagnetic stiffness and damping coefficients
of the interaction between motor and mechanical system
were determined by means of the analytical method.
Ju et al. [24] constructed the global electromechanical-
coupling dynamic models for the main transmission
system of the scraper conveyor, and the Hopf bifurcation

characteristic is analyzed, which was caused by sliding
friction. In view of the above mentioned, Hopf bifurcation
is a significant factor affecting the stability of the elec-
tromechanical coupling transmission system. However,
the dynamic analysis of the electromechanical coupling
system mainly focus on the induction motor, and the
PMSM are rarely considered. It is a remarkable fact that
the damping of the semidirect transmission shafting would
change with the shafting vibration, the shaft fatigue, the
wear, and lubrication of the bearing [25, 26]. Torsional
vibrations of the cutting transmission system caused by
shaft damping variations would further lead to the shafting
destabilization [27, 28].

Different from the above references, this paper analyses
the effect of Hopf bifurcation produced by variable
damping in shearer semidirect transmission system driven
by the PMSM. Furthermore, based on the washout filter,
the Hopf bifurcation controller is designed for suppressing
the transmission system’s unstable oscillation. Finally, this
paper is organized as follows. *e electromechanical-
coupling dynamics modelling for the main transmission
system of the shearer driven by the high-torque and low-
speed PMSM is provided in Section 2.*e Hopf bifurcation
characteristics analysis for the system torsional vibration
and numerical simulation verification is given in Section 3.
*e washout filter controller for the system torsional vi-
bration is designed, and numerical simulation verification
is given in Section 4. Finally, the conclusions are drawn in
Section 5.

2. Electromechanical Coupling Torsional
Vibration Modelling

*e semidirect cutting transmission system of the shearer
driven by PMSM mainly consists of PMSM, three-stage gear,
shafting, cutting drum, and so on. *ere are both resilient
elements with small quality and inertia with large mass.

Rotor
(permanent magnet)

Cutter roller

Elastic torque sha�

�ree-stage straight
tooth retarder

Figure 1: Schematic diagram semidirect cutting transmission system.
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*erefore, it is a multimass spring damping system with
electromechanical coupling. To analyze the coupling dy-
namic characteristic of the electrical parameters and me-
chanical parameters, the PMSM and the cutting drum are
regarded as the power source and load system, respectively,
and ignore the effect of the reducer gear clearance. As a
protective shaft for PMSM, the elastic torque shaft is more
vulnerable to damage due to the relief groove and the low
torsional strength. However, all other components have the
feature of large mass and the small elasticity. Hence, the
effect of the elastic torque shaft is only considered, and the
other shaft and gear are equivalent to the PMSM and
cutting drum. *en, the transmission system is equivalent
to the two-mass spring torsional vibration system with
resilient elements (PMSM and cutting drum) and inertia
element (elastic torque shaft), as shown in Figure 2. To
simplify the analysis, take the following assumptions: (1)
neglecting the iron core saturation effect in the PMSM; (2)
no consideration of eddy current and hysteresis loss in the
PMSM; and (3) the motor stator winding current is a three-
phase symmetric sine current.

In Figure 2, J1 is the PMSM inertia; J2 is the sum of the
moment of the cutting drum and the transformation of the
gear and other elements inertia; ia, ib, and ic are the three-
phase stator current of the PMSM, respectively; K and C are
the torsional stiffness and damping coefficient of the elastic
torque shaft; Tm and TL are the electromagnetic torque of
the PMSM and load torque of cutting drum; and θ1 and θ2
are the mechanical angle of the PMSM shaft and cutting
drum shaft.

Two mass systems are modelled by the Lagrange
equation [29]. *e kinetic energy of the shearer cutting
transmission shafting mainly includes the PMSM rotational
kinetic energy and the cutting drum rotational kinetic en-
ergy, which can be expressed as follows:

E � E1 + E2 �
1
2
J1θ

2
1 +

1
2
J2θ

2
2. (1)

*e system potential energy can be represented as

V �
1
2

K θ1 − θ2( 􏼁
2
. (2)

As a result of the downhole environment, water is
sprayed to reduce the dust concentration, so the cutting
environment is wet. In the process of cutting coal, system
will produce nonlinear sliding friction forces due to relative
displacement of cutting drum and coal seam. In view of the
linear damping and nonlinear stick, slip frictional force is
studied [26], which can be shown as follows:

Fc
1 � −C _θ1 − _θ2􏼐 􏼑−C′ _θ1 − _θ2􏼐 􏼑

3
,

Fc
2 � −C _θ2 − _θ1􏼐 􏼑−C′ _θ2 − _θ1􏼐 􏼑

3
.

⎧⎪⎨

⎪⎩
(3)

*e nonconservative generalized force of the electro-
magnetic system is electromagnetic torque and damping
force. And the nonconservative generalized force of the
mechanical part is the external load and damping force, and
it are expressed as

Qi � 􏽘
2

j�1
F

j
j

zθj

zqi

, (i � 1, 2), (4)

where zqi(i � 1, 2) is the generalized coordinate.
Substituting equation (3) into equation (4) yields the gen-
eralized torque:

Q1 � Tm −C _θ1 − _θ2􏼐 􏼑−C′ _θ1 − _θ2􏼐 􏼑
3
,

Q2 � −TL −C _θ2 − _θ1􏼐 􏼑−C′ _θ2 − _θ1􏼐 􏼑
3
.

⎧⎪⎨

⎪⎩
(5)

*e system Lagrange–Maxwell equation is

d

dt

zL

z _qi

􏼠 􏼡−
zL

z _qi

+
zF

z _qi

� Qi. (6)

For the mechanical system, the dynamic equation of the
PMSM can be obtained by taking the rotation angle θ1 of the
PMSM as the generalized coordinates (q1) and substituting
equations (1)∼(5) into equation (6):

J1
€θ1 + K θ1 − θ2( 􏼁 + C _θ1 − _θ2􏼐 􏼑 + C′ _θ1 − _θ2􏼐 􏼑

3
� Te. (7)

Similarly, the dynamic equation of the cutting drum is

J2
€θ2 −K θ1 − θ2( 􏼁−C _θ1 − _θ2􏼐 􏼑−C′ _θ1 − _θ2􏼐 􏼑

3
� −TL. (8)

*e mathematical model of PMSM in abc three-phase
stationary coordinate system can be obtained [30] as
follows:

ua � Rsia +
d

dt
Lsia + ψfa􏼐 􏼑,

ub � Rsib +
d

dt
Lsib + ψfb􏼐 􏼑,

uc � Rsic +
d

dt
Lsic + ψfc􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Based on the electromagnetic field theory, electromag-
netic torque Te is equal to the deflection of magnetic energy
storage on the mechanical angular displacement θ1.
ψa,ψb, and ψc are the magnetic chain of three-phase
winding. ψfa,ψfb, and ψfc are the magnetic chain pro-
duced by a permanent magnet on the three-phase winding,
and p is the number of pole pairs:

Te �
1
2

p
z

zθ1
iaψa + ibψb + icψc( 􏼁

�
1
2

p
z

zθ1
Lsia + ψfa + Lsib + ψfb + Lsic + ψfc􏼐 􏼑.

(10)

By introducing the Clark transform and Park transform,
the stator current of the PMSM can be transformed from the
three-phase stationary coordinate system (abc) to two-phase
rotating coordinate system (dq). Equation (9) can be con-
verted to
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ud

uq

⎡⎢⎣ ⎤⎥⎦ �
2
3

sin θe sin θe −
2π
3

􏼒 􏼓 sin θe +
2π
3

􏼒 􏼓

cos θe cos θe −
2π
3

􏼒 􏼓 cos θe +
2π
3

􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ua

ub

uc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Rdid + Ld
did

dt
−pω1Lqiq

Rqiq + Lq
diq

dt
+ ω1Ldid + ω1ψf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(11)

where p is the number of pole pairs, Rd � Rq � R, id and iq are
the direct and quadrature axis current in the dq coordinate
system, Ld and Lq are the direct and quadrature axis inductor
in the dq coordinate system and Ld � Lq in stick-type PMSM,
ψf is the magnetic chain of the permanent magnets, and θe is
the electric mechanical angular displacement.

Based on the electromagnetic field theory, in the two-
phase rotating coordinate system (dq), the electromagnetic
torque Te is

Te �
3
2

piq id Ld − Lq􏼐 􏼑 + ψf􏽨 􏽩

�
3
2

pψfiq.

(12)

When the load torque and the electromagnetic torque
are balanced, the mechanical angular velocity of the rotor is
constant; therefore, θ1 � 􏽒Ωdt + φ1, θ2 � 􏽒Ωdt + φ2,
θ1 − θ2 � φ1 −φ2, and J1φ1 + J2φ2 � 0 [31], so

θ1 − θ2 � φ1 −φ2 �
J1 + J2

J2
φ1,

ω1 � _θ1 � Ω + _φ1 � Ω +
J2

J1 + J2

_θ1 − _θ2􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

Finally, substituting equation (13) into equation (11) and
combing with equations (7), (8), and (12), the electrome-
chanical coupling torsional vibration model of the cutting
transmission shafting is

_Id � −
R

Ld
Id +

Lq

Ld
Iq Ω +

J2

J1 + J2

_θ1 − _θ2􏼐 􏼑􏼢 􏼣p +
ud

Ld
,

_Iq � −
R

Lq
Iq −

Ld

Lq
Id Ω +

J2

J1 + J2

_θ1 − _θ2􏼐 􏼑􏼢 􏼣p−
ψf

Lq
Ω +

J2

J1 + J2

_θ1 − _θ2􏼐 􏼑􏼢 􏼣 +
uq

Lq
p,

€θ1 +
K

J1
θ1 − θ2( 􏼁 +

C

J1

_θ1 − _θ2􏼐 􏼑 +
C′
J1

_θ1 − _θ2􏼐 􏼑
3

� −
3p

2J1
ψfIq,

€θ2 −
K

J2
θ1 − θ2( 􏼁−

C

J2

_θ1 − _θ2􏼐 􏼑−
C′
J2

_θ1 − _θ2􏼐 􏼑
3

� −
TL

J2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

In equation (13), Id, Iq, θ1, and θ2 are variable items
which will change with time. *is system will exhibit
complex dynamical behavior due to the variation of the
damping C.

3. Cutting Transmission System
Bifurcation Analysis

For the convenience of the calculation, the difference value
of two angles (θ1, θ2) is used to describe the strength of the

C

K

J1 θ1

θ2

Tm

TL

J2

Rotor (permanent magnet) Cutter roller

Figure 2: Electromechanical coupling torsional vibration physical model of cutting transmission shafting.
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vibration. *erefore, let the third type minus the fourth type
in equation (14) merge nonvariable items in the system,
defined as follows:

x1 � Id,

x2 � Iq,

x3 � θ1 − θ2,

_x3 � x4 � _θ1 − _θ2,

_x4 � €θ1 − €θ2,

a � −
R

Ld
,

b �
ΩpLq

Ld
,

c �
pLq

Ld

J2

J1 + J2
,

d � −
ΩpLd

Lq
,

e � −
R

Lq
,

f � −
pLd

Lq

J2
J1 + J2

,

g � −
pψf

Lq

J2

J1 + J2
,

h � −
3pψf

2J1
,

m � −
K

J1
+

K

J2
􏼠 􏼡,

k � −
C′
J1

+
C′
J2

􏼠 􏼡,

s �
uq

Lq
−
Ωpψf

Lq
,

n � −
C

J1
+

C

J2
􏼠 􏼡,

l �
ud

Ld
,

z � TL,

(15)

where x1 is the quadrature axis current in the dq coordinate
system, x2 is the direct axis current in the dq coordinate

system, x3 is the difference between the mechanical angle of
the PMSM and the angle of the cylinder, and x4 is x3’s
derivative of time.

*erefore, equation (14) is simplified to
_x � g(x, C),

_x1 � ax1 + bx2 + cx2x4 + l,

_x2 � dx1 + ex2 + fx1x4 + gx4 + s,

_x3 � x4,

_x4 � hx2 + mx3 + nx4 + kx3
4 + z.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

After the cutting transmission system of the shearer is
changed to semidirect drive, the damping will change in the
following cases: (1) the intensity of the vibration in the shaft
system and (2) the wearing and the lubrication condition of
the shaft. In addition, there may be oscillation vibration
and Hopf bifurcation with the damping changes in the
shafting, so the damping C is selected as the bifurcation
parameter.

*e equilibrium point of equation (16) can be transferred
to the coordinate origin through simple linear trans-
formation. *erefore, the dynamic characteristics of the
system balance at the origin are of universal significance
without loss of generality. Hence, let l � 0, s � 0, and z � 0,
and then equilibrium point can be transferred to the co-
ordinate origin x0 � (0, 0, 0, 0) for equation (16). *e Ja-
cobian matrix and nonlinear terms of the system at x0,
respectively, are as follows:

A x0, C( 􏼁 �

a b 0 0

d e 0 g

0 0 0 1

0 h m n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f x0, C( 􏼁 �

cx2x4

fx1x4

0

kx3
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

According to the Hopf bifurcation theory, the nec-
essary and sufficient conditions for Hopf bifurcation are
expressed as follows: there are only one pair of conjugate
imaginary roots in the characteristic root of A(x0, C) and
the other n− 2 characteristic roots have negative real
parts. *e system is unstable at the origin when positive
real part exists. While the eigenvalues have all negative
real parts, the system is asymptotically stable. In order to
simplify the calculation, the Hurwitz criterion is used to
determine the existence of the Hopf bifurcation in this
paper.

*e characteristic polynomial of A(x0, C) can be
expressed as

λ4 + p1λ
3

+ p2λ
2

+ p3λ
1

+ p4 � 0, (18)

where p1 � −n− e− a, p2 � ae−m− b d + an−gh + en, and
p3 � am + em + agh− aen + b dn , p4 � b dm− aem.
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Hurwitz criterion can be shown as

pi C∗( )> 0, (i � 1, 2, 3, 4),

Δi C∗( )> 0, (i � 1, 2, 3),

Δ3 C∗( ) � 0,

d Δ3(C)( )
d(C)

􏼌􏼌􏼌􏼌􏼌􏼌C�C∗
≠ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

In equation (19), Δi is the order principal minor de-
terminant of equation (18):

Δi �

p1 p3 p5 · · · p2i−1

1 p2 p4 · · · p2i−2

0 p1 p3 · · · p2i−3

⋮ ⋮ ⋮ ⋮ ⋮

0 0 1 · · · pi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where the possible threshold is derived from Δ3(C∗) � 0.
And if the resulting point C∗ satisfies the other requirements
of equation (19) at the same time, the Hopf bifurcation
occurs at this point.*e parameters in themodel are selected
according to the data in the actual system shearer. *erefore,
the main parameters of semidirect cutting transmission
system in the form are as follows:

J1 � 1.96 kg·m2
,

J2 � 1.425 kg·m2
,

Rd � Rq � R � 0.136Ω,

Ld � Lq � 0.0284H,

ψf � 1.235 v·s,

Ω � 5 rad/s,

K � 4100N ·m/rad,

(21)

where Ω is the rated speed of PMSM, J1 is the moment of
inertia for PMSM, J2 is the sum of the moment of the cutting
drum and the transformation of the gear and other elements
inertia, and K is the stiffness coefficient of the elastic torque
shaft. R, Ld, Lq, and ψf can be obtained, respectively, by off-
line identification of PMSM.

By calculation, the couple transmission system of the
shearer semidirect drive met equation (19) at C∗ � 41.4675.
In this case, the characteristic root of A(x0, C) has one pair
of conjugate imaginary roots. *e pure virtual root is ω0i,
and vector U and W are right and left feature vectors
corresponding to the characteristic root A(x0, C∗), re-
spectively. *eir relationship can be expressed as

UA � ω0iU,

AW � ω0iW,

UW � 1.

⎧⎪⎪⎨

⎪⎪⎩
(22)

*rough equation (22), the stability index b of the Hopf
bifurcation is defined as

b � Re􏼒−UfxxxWWW
∗

+ 2UfxxWA
−1

(0)fxxWW
∗

+ UfxxW
∗

× A(0)− 2iω0I􏼂 􏼃
−1

fxxWW􏼓.

(23)

In equation (23), W∗ is the conjugate plural of W, and
A(0) � A(x0, C)|C�C∗:

fxxxWWW
∗

�
z

zx

z

zx

zf(x, C)

zx
× W􏼠 􏼡W􏼠 􏼡W􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
C�C∗ ,x�x0

.

(24)

According to the value of bC∗ , the stability of periodic
solutions of Hopf bifurcation in the original system can be
determined. If bC∗ < 0, the bifurcation type of the system is
subcritical Hopf bifurcation, and the periodic solution is
unstable. On the contrary, bC∗ > 0, the bifurcation type of the
system is supercritical Hopf bifurcation, and the bifurcated
periodic solution is stable. *e stability index of Hopf bi-
furcation is bC∗ � 0.00174> 0 through calculation, and
therefore, the type of Hopf bifurcation is supercritical Hopf
bifurcation.

*e Runge–Kutta method is used to verify the dynamic
characteristics generated by the system Hopf bifurcation
point C∗, and the parameters are brought into equation (16).
In Figure 3 of torsional vibration amplitude figure variation
with the damping C, the system exhibits different dynamics
on both sides of the bifurcation point because of super-
critical Hopf bifurcation. When C is greater than the bi-
furcation point C∗, the running state of the main
transmission system is stable and no limit cycle appears, as
shown in Figure 4.

When C is smaller than the bifurcation point C∗, the
system exhibits a stable limit cycle motion. Figure 3 shows
that when the C is less than the critical value C∗, the
smaller the value of the damping C, the bigger the limit
cycle. At the same time, when the damping is greater than
the critical damping, the amplitude of the vibration is close
to 0. It can be available from the comparison of time-
history response of identical initial value in Figure 5, and
the amplitude of the limit cycles is obviously larger in the
case of smaller damping. Furthermore, when C is fixed, the
amplitude of the limit cycle has nothing to do with the
initial value, as shown in Figure 6, which shows that the
amplitudes are basically the same under two different
initial values. From the above analysis, the conclusion of
the simulation results is consistent with the theoretical
analysis.

4. Cutting Transmission System
Vibration Control

*e numerical simulation results in Figures 3 and 5 show
that, the system oscillates and the limit cycle appears when
the damping C is smaller than C∗. When the system re-
sponds to a smaller limit cycle, it has little harm to the
elastic torque shaft. However, when the external conditions
cause damping C to be smaller, the amplitude of the limit
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cycle will increase. At this time, the cutting transmission
shaft system of the shearer will have strong vibration, which
will cause great harm to the fatigue damage of the elastic
torque shaft. In order to control the unstable oscillation of
shafting, the washout filter controller is introduced, which
is a kind of the extended linear or nonlinear state feedback
method.

*e state equation of the washout filter can be repre-
sented as

_ω � α− εω, (25)

where ω is the state variables of the washout filter, α is the
input variables, ε is the time constant, and α− εω is the output
variable. In this paper, from the perspective of imple-
mentation, x2 is used as the input variable, and x5 is used as
the state variables. In nonlinear systems with Hopf bi-
furcation, the squared term and the cubic term can affect the
stability of Hopf bifurcation. So, nonlinear feedback con-
troller can be shown as w � km(x2 − εx5) + kn(x2 − εx5)

3; km

and kn are the linear gains and nonlinear control gain, re-
spectively. w is added to the second term in equation (16) as
the output feedback.

So, the controlled system can be shown as
_x1 � ax1 + bx2 + cx2x4,

_x2 � dx1 + ex2 + fx1x4 + gx4 + w,

_x3 � x4,

_x4 � hx2 + mx3 + nx4 + kx3
4,

_x5 � x2 − εx5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

*e Jacobian matrix and nonlinear terms of the control
system can be represented as

B x0, C( 􏼁 �

a b 0 0 0

d e + km 0 0 −εkm

0 0 0 1 0

0 h m n 0

0 1 0 0 −ε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

h x0, C( 􏼁 �

cx2x4

fx1x4 + kn x2 − εx5( 􏼁
3

0

kx3
4

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

If ε � 0.1, km ≠ 0, kn � 0, and C � 41.4675, the washout
filter will not change the position of the equilibrium point.
And the characteristic equation of B(x0, C) in equation
(26) is

λ5 + p1λ
4

+ p2λ
3

+ p3λ
2

+ p4λ + p5 � 0, (28)

where p1 � 59.93−km,p2 � −55.05km + 5972,p3 � −5210km+

124400, p4 � −23800km + 8077000, and p5 � 806400.
If all eigenvalues of matrix B(x0, C) have the nega-

tive real part, the controlled system will not occur
Hopf bifurcation at C∗, which means Δi > 0(i � 1, 2, 3, 4),

km <−0.006597. When ε � 0.1, km � −1, and kn � 0, the
roots of B(x0, C) have negative real parts at this time,
and the system is asymptotically stable, as shown in
Figure 7(b). At this moment, the bifurcation character-
istics are controlled at the Hopf bifurcation point C∗, but
the other dynamics of the system have not been
determined.

According to the Hopf bifurcation theory, when
Hopf bifurcation occurs at the equilibrium point, system
(26) must satisfy the condition of equation (29). *e re-
lationship between the linear control gain km and the
bifurcation critical point C∗ can be drawn, which is shown
in Figure 8. When km � 0, the controlled system has Hopf
bifurcation same as the original system at C � 41.4675.
And if km � −1, the controlled system has the Hopf bi-
furcation point at C � 18.09. Comparing to the original
system, the system stability domain increases greatly.
*erefore, when the linear gain part of the controller se-
lects the appropriate value, the bifurcation characteristics
of the nonlinear system can be effectively controlled and
the bifurcation point is transferred to the safe working
area:

C (N·m·s/rad)

x 3
 (r

ad
)

Initial value
[0.1, 0.1, 0.1, 0.1]
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0
10 20 30 40 50 60
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Figure 3: *e torsional vibration amplitude curve with the
damping C.
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Figure 5: Phase trajectory contrast diagram of the system with different dampings: (a) C � 20; (b) C � 10.
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pi C∗( )> 0, (i � 1, 2, 3, 4, 5),

Δi C∗( )> 0, (i � 1, 2, 3, 4),

Δ4 C∗( ) � 0,

d Δ4(C)( )
d(C)

􏼌􏼌􏼌􏼌􏼌􏼌C�C∗
≠ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Take ε � 0.1, km � −1, and kn ≠ 0, and the Hopf bi-
furcation of the controlled system occurs at C � 18.09
through calculation. *e Jacobian matrix B(x0, C) has a pair
of pure imaginary roots λ1,2 � ±50.5163i, whose corre-
sponding eigenvectors can be expressed as

φ � φ �

0

−5.2989− 2.6000i

0.0362 + 0.0178i

0.6615 + 0.0432i

0.0008 + 0.0003i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

Since it is more complicated to calculate the three-order
normal form of the controlled system through the central
manifold theorem, the direct calculation method of normal
form in [32] can be used.*ismethod only needs to calculate
the pure virtual root of the controlled system and its cor-
responding eigenvector, and then the normal form of the
controlled system can be obtained through the nonlinear
transformation. *e linear transformation is introduced
here:

X � φu + φu + 􏽘
j+k≥2

Hjku
j
u

k
. (31)

*e Hopf bifurcation specification of the controlled
system can be shown as

_u � 50.5163iu + Eu
2
u. (32)

*e nonlinear transformation is introduced to the
nonlinear terms, and then the polynomial form of u and u as
follows:

f(X) � 􏽘
j+k≥2

Fjku
j
u

k
, (33)

where F21 is coefficient vector corresponding to u2u.

F21 � F21,1 F21,2 0 F21,4 0􏼂 􏼃,

F21,1 � c φ2H11,4 + φ2H20,4 + φ4H11,2 + φ4H20,2􏼐 􏼑

� 0.0022 + 0.0015i,

F21,2 � f φ1H11,4 + φ1H20,4 + φ4H11,1 + φ4H20,1􏼐 􏼑

+ kn φ2 − 0.1φ5( 􏼁
2 φ2 − 0.1φ5( 􏼁

� kn(0.4751 + 0.0009404i) + 0.001923− 0.002212i,

F21,4 � kφ2
4φ4 � 1.1735 × 10−4 + 2.5612 × 10−4i.

(34)

In the above equation,
H11 � −A−1F11,

H20 � [2 × 50.5163iI−A]−1F20,

F11 � 0 0 0 φ2φ4 + φ2ϖ4 0􏼂 􏼃
T
,

F20 � 0 0 0 φ2φ4 0􏼂 􏼃
T
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

Finally, the parameters E is

E � 0.004265 + 0.4751kn + 0.0009404kn − 0.0004616( 􏼁i.

(36)

So normal form of the controlled system can be
expressed as

_u � 50.5163iu + 􏼂0.004265 + 0.4751kn

+ 0.0009404kn − 0.0004616( 􏼁i􏼃u
2
u.

(37)

According to the Hopf bifurcation theory, the controlled
system will have a supercritical bifurcation at C � 18.09
when Re(E)< 0 and kn <−0.009.*e bifurcation type of the
system stays the same by calculating. At the same time,
subcritical Hopf bifurcation will occur at kn >−0.009, as
shown in Figure 9. It can be seen from Figure 9(b) that the
time-history response is stable when the initial values are
close to the equilibrium point. When initial values are far
from the equilibrium point, the time-history response in-
creases with time in Figure 9(a). It is necessary to avoid the
generation of subcritical bifurcation in the actual situation.

*e amplitude of the limit cycle can be effectively
controlled through the selection of the value of km and kn

reasonably. Figure 10 shows that the amplitude of the
controlled system is obviously lower than that of the original
system without subcritical Hopf bifurcation (Figure 10(b) is
the time-history diagram of the controlled system at
km � −1 and kn � −1), and the significant effect is achieved
after addition of the control system. In contrast to the two
controlled systems in Figure 11 (km � −1 and kn � −0.1 in
Figure 11(a); km � −1 and kn � −10 in Figure 11(b)), if the

–6 –4 –2 0 2
km

0

20

40

60

80

100
C∗

Figure 8: *e curve diagram of the bifurcation critical value C∗

with the linear gain km.
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case of km is fixed, the smaller the kn is, the smaller the
amplitude of the limit cycle is.

*e bifurcation point will vary with km, and the bi-
furcation type will change with kn. At the same time, it is
necessary to calculate the eigenvalue and eigenvector of the
system to determine the type of bifurcation, but the ei-
genvalue and eigenvector are difficult to calculate due to the

change of km. So it is hard to calculate the type of bifurcation
for the system through the theoretical method when km and
kn change simultaneously. However according to the sim-
ulation, the subcritical Hopf bifurcation only occurs when kn

is near 0. Figure 12 shows the amplitude variation of km and
kn change at the same time when kn is far less than 0. It can
be seen from Figure 12 that the vibration amplitude
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Figure 9: Comparison of amplitudes at different initial values of the controlled system: C � 18.09, km � −1, and kn � 0.01.
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Figure 10: *e amplitude contrast diagram of the original and controlled systems at C � 10.
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decreases with the reduction of linear gain km and nonlinear
gain kn.

5. Conclusion

In this paper, the Hopf bifurcation caused by the change of
the system damping was studied concerning the shearer
transmission shafting semidirect driven by the PMSM. *e
electromechanical coupling dynamic model was established
by the Lagrange–Maxwell equation. *e dynamic bi-
furcation behavior of the system transmission shafting was
analyzed through theoretical analysis and numerical simu-
lation. Based on the washout filter, the torsional vibration
bifurcation of the shafting was effectively controlled. *e
research work of this article mainly includes the following:

(1) Due to the harsh environment of coal cutting, there is
the supercritical and subcritical Hopf bifurcation with
the diversification of the damping in the cutting
transmission system. When the C is less than the
critical value C∗, the smaller the value of the damping
C, the bigger the limit cycle in supercritical Hopf
bifurcation. Simultaneously, the amplitude of the limit
cycle has nothing to do with the initial value.

(2) Based on the normative theory, the Hopf bifurcation
controller of the shearer cutting transmission shaft
was designed by the washout filter. *e results show
that the system stability domain increases with the
linear gain of the controller and the generation of the
subcritical Hopf bifurcation can be inhibited by the
cube nonlinear parts.

(3) For supercritical Hopf bifurcation, selecting the
linear and nonlinear gain reasonably can effectively
control the torsional vibration and the shafting
torsional vibration. And the limit cycle amplitude
decreases with the nonlinear gain of the controller
when the linear gain is zero. At the same time, when
kn and km are varied simultaneously, the limit cycle
amplitude decreases with the reduction of linear
gain km and nonlinear gain kn in supercritical Hopf
bifurcation.

All these results are of important theoretical significance
to reduce the torsional vibration caused by nonlinear factors
in the shearer cutting transmission system and provide a
guarantee for the safe and reliable application of the low-
speed and large-torque PMSM on the shearer.
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